

Ernesto San Vicente Pandrol

PANDROL

Partners in excellence

Shaping sustainable rail infrastructure with innovative solutions

Pandrol Sustainable Resilient Systems

PANDROL

Partners in excellence

Stakeholders expectations in Transit projects

What is expected from a Modern Track System?

Stakeholders expectations in Transit projects

What is expected from a Modern Track System?

Pandrol integral track expertise

The basics

The problem

The problem

The graph shows that there is a frequency range where all the three phenomena are relevant, roughly between 20 and 100Hz. In this range it can be difficult to distinguish one from the other

The objective

Direct effect of correct track resilience design

Track isolation principles

The track can be modelized as a 1 DOF system consisting in a mass (the train) on an spring (the elastic medium) with specific stiffness and damping characteristics

Fout(t)

Track isolation principles

The track can be modelized as a 1 DOF system consisting in a mass (the train) on an spring (the elastic medium) with specific stiffness and damping characteristics

Fout(t)

Track isolation principles

 The track can be modelized as a 1 DOF system consisting in a mass (the train) on an spring (the elastic medium) with specific stiffness and damping characteristics

Track isolation principles

- Multi Degree of Freedom: supposes more than one elastic medium within the same system
- Represents better the reality

Track isolation principles

- Insertion loss (IL) determines the performance of a mitigation measure
- It is a comparison between 2 systems, not a "property" of a system:

 $IL = dBv_2 - dBv_1$

Track isolation principles

- Insertion loss (IL). Practical application

 $IL = dBv_2 - dBv_1 \rightarrow re-writing: dBv_1 + IL = dBv_2$

Track Elastic Model (TEM) simulating software

			₽ А _{Pa}	NDROL rtners in excellence				Track E	lastic	Mod	lel
General Project information	1										
Project Number	02021-00352	Country	Country	Project Name		Project Name		Customer		Customer	
Author		Date	31/03/2021	Calculation Case	C	alculation Cas	se	Program Version		6.1.1	
Basic Inputs											
Rolling stock parameters											
Type of rolling stock	Metro	•									
	Axle load	160	kN/axle	Unsprung mass coef.	15	96		Bogie spacing	9,00) m	
	Speed	80	km/h	Unsprung mass	1.223	kg/wheel		Axle-axle dist. in bog	ie 2,00) m	
Track parameters	Refe	Reference System			Isolated System 1			Isolated System 2			
Given name	Ref	Reference System			Isolated System 1			Isolated System 2			
Track type	Ballast		-	Directly Fastened Rail			-	Floating Ballast			
		<u>*</u>		-	-						
Rail type	54E1 (UIC54)	·		54E1 (UIC54) 💌				54E1 (UIC54)	•		
Spacing fastenings	0	6 m		0,6				0,	6 <mark>m</mark>		
Level 1	RAILPAD	kstat	kdyn,df kdyn,vbr	RAILPAD	kstat	kdyn,df	kdyn,vbr	RAILPAD	kstat	kdyn,df	kdyn,vb
	EN 13146-9		[kN/mm]	EN 13146-9		[kN/mm]		EN 13146-9		[kN/mm]	
	Standard 🔻 C	100,0	140,0 250,0	Standard 💌 C	100,0	140,0	250,0	Custom 🔻 C	125,0	145,0	260,0
Level 2	USP	Cstat	Cdyn,df Cdyn,vbr	UBP	kstat	kdyn,df	kdyn,vbr	USP			
	DIN 45673-6		[MN/m³]	EN 13146-9		[kN/mm]					
	USP-1-07d 🔻 🕻	173,0	236,4 236,4	Vipa SP/DRS/DF 🔻 C	20,0			Nothing 🔻 C	:		
Level 3	UBM							UBM			
	Nothing 🔻 C							Nothing 🔻 C	:		
				FSM/FSP horizontal	Cstat	Cdyn,df	Cdyn,vbr	FSM/FSP horizontal	Cstat	Cdyn,df	Cdyn,vt
				DIN 45673-7		[MN/m*]		DIN 45673-7		[MN/m³]	
				FSM-L13 🔽 C	10			FSM-L13 🔻 C	: 16	30	4:
				FSM/FSP vertical	Gstat	Gdyn,df	Gdyn,vbr	FSM/FSP vertical			
				DIN 45673-7		[MN/m³]					
				FSM-L26 V C	6	10		Nothing 🔻 C	:		

- The TEM is a track performance simulation software
- It is a Multi Degree of Freedom model: up to 6 DOF
- All detailed track parameters are considered (masses, stiffnesses, geometries) together with rolling stock characteristics

Advanced Inputs			
Sleeper / Base plate / Booted bl	ock parameters		
Туре	Sleeper	Base plate	Sleeper
Length (per rail seat)	1,35 m	0,20 m	1,35 m
Width	0,25 m	0,30 m	0,25 m
Height	0,25 m	0,05 m	0,25 m
Material	Concrete 💌	Concrete 💌	Concrete 💌
Density	2.500 kg/m³	2.500 kg/m ^a	2.500 kg/m³
Mass (per rail seat)	210,94 kg	7,50 kg	210,94 kg
Contact area (per rail seat)	0,3375 m²	0,0600 m²	0,3375 m²
Ballast parameters			
Thickness under sleeper	0,30 m		0,30 m
Height of ballast shoulder	0,15 m		0,15 m
Width of ballast shoulder	0,25 m		0,25 m
Angle of friction	48 °		48 *
Density	2.000 kg/m³		2.000 kg/mª
E module	100 MN/m²		100 MN/m²
Static stiffness (per rail seat)	233 MN/m		233 MN/m
Static bedding modulus	333 MN/m³		333 MN/m ^a
Dynamic ratio	2,00		2,00
Loss factor	50 %		50 <mark>%</mark>
Slab and/or auxiliary prefab ele	ment (in case of floating ballast) param	neters	
Layout		Single track	Single track
Width		3,00 m	3,00 m
Thickness		Single track 💌 m	Single track 🔍 m
Density		2.500 kg/m ³	2.500 kg/m³
Inertia		0,0080 m*	0,0080 m*
Cross section area		1,20 m²	1,20 m²
Foundation plate (under slab) p	arameters		
Width		3,00 m	3,00 <mark>m</mark>
Thickness		0,20 m	0,20 m
Soil parameters			
Soil type	Hard Soil <	Hard Soil 👻	Hard Soil <
Modulus Type	EV2	EV2 💌	EV2
Modulus value	80 MN/m ^a	80 MN/m²	80 MN/m²
Density	1.900 kg/m ^a	1.900 kg/m³	1.900 kg/m³
Poisson ratio	0,35	0,35	0,35
Extra notes (if any)			

Track Elastic Model (TEM) simulating software

- Obtained results:
 - Track deflection
 - Insertion Loss
 - Others...
- At Pandrol, as full integrated track systems supplier, we have the expertise and understand the complexity of all the track elements, from the fasteners to the floating systems through all the intermediate components
- We can find and optimize the solution from different approaches

Florence Lines 2 and 3

Challenges

- Downtown Historic city
- Limited depth (slab thickness 250mm in some areas)
- Achieve 20dBv
- Constructability for a minor disturbance
- Stray currents protection

Requirements

- Level L0: embedded rail solution (~18 klmst)
- Level L2 (along 10.900 lmst): > 17 dBv @ 63-125 Hz
- Level L3 (along 6.680 lmst) : > 20 dBv @ 63-125 Hz

- Solution

- All challenges and requirements fixed by Pandrol QTrack[®] system:
 - Level L0: Pandrol QTrack[®] SP
 - Level L2: Pandrol QTrack[®] SP + Pandrol FSM-L13
 - Level L3: Pandrol QTrack[®] SP + Pandrol FSM-L06
 - Stray currents protection via QT ELEC film type ELEC-L

Florence Lines 2 and 3

Results

N&V measurements by third party

- On site stray currents measurements
- Total satisfaction of the operator and the contractor \rightarrow Prolong the solution to additional extensions in Florence
 - → Replicate experience to Bologna tramway

Tramway Zaragoza Line 1

- **Challenges and requirements**
 - Line North-South across downtown
 - Urban integration
 - Grass Track
 - Quick installation 26 track kilometers

- Pandrol QTrack[®] HP
- Pandrol QTrack[®] HP + Pandrol FSM-L13

Tramway Zaragoza Line 1

Aresults

- Project completed in <3 years
- Successful re-urbanisation of the city \rightarrow UITP Light Rail Award
- Total embracement of the population
- Good installation experience from contractor(s) → Export QTrack system to Sydney LRT
- Very positive feedback from maintenance team

Sydney CBD & South East Light Rail

Challenges

- Central Business District \rightarrow Minor disruption during works
- − High labour cost \rightarrow Constructability
- Highly occupied level crossings

Requirements

- Catenary-free by third rail technology
- High stray currents insulation 10 Ohm·km
- Track finishing in granite stones with no concrete shoulder

Sydney CBD & South East Light Rail

Solution

- Pandrol QTrack[®] XP
- Pandrol QTrack[®] HP + Pandrol FSM-L13
- Pandrol QTrack[®] HP + Pandrol FSM-L4,5
- QT ELEC type ELEC-M

Results

- QT JIGs with added features:
 - Lowering tubes for single concrete shot without metal plate imprint
 - Auxiliary holding plate to enhance third rail installation
- Level crossings with high traffic demand fulfilled using QT JIGs and within super reduced installation window time
- Verified stray currents performance

Edinburgh Trams to Newhaven

- Stray currents protection combined with sharp curves 25m
- Top of concrete level to be absolutely ToR level

) Solution

- The Pandrol QTrack® meets at the same time
 - Required stray current protection level thank to the QT ELEC level
 - Suitable for sharp curves with no need of additional clips nor tiebars
- QT ENCAPSULATION modified for Top of rubber level = ToR level

Santiago de Chile Metro: Integrated SD fastening and FSM system for vibration attenuation

Pandrol has developed the SD (Safe Driven) family, with an **innovative design** that makes the product more **environmentally sustainable**, more **robust** and cost **competitive** and an **optimized geometry** that allows **automatic installation** giving higher rates of construction and savings during track construction and maintenance.

Challenges and requirements

- Vibration mitigation
- Earthquake prone-area that required a fastening solution with potential +30 mm vertical adjustment

Solution

- Pandrol Floating Slab mat for vibration attenuation and correct track resilience integrated with Pandrol fastenings stiffness: Integral track design
- SEE-SD rail fastening system with a new plastic baseplate to facilitate installation in concrete

Growth of rail transport and pathway to net zero emissions

The big challenges

- With urban-dwellers predicted to account for 75% of the global population by 2050, urban rail transport is critical to help cities grow successfully.
- At the same time, even rail being today one the most sustainable modes of transport, it must still decrease its CO₂ emissions by 85% in order to reach IEA net zero emissions scenario by 2050.

FIGURE 9. Global $\rm CO_2$ transport emission trajectories by mode required to achieve IEA net zero emissions scenario

Source: See endnote 87 for this section.

$\textbf{Global}~\textbf{CO}_{\textbf{z}} \textbf{transport}~\textbf{emission}~\textbf{trajectories}~\textbf{by}~\textbf{mode}$

CO, reduction from 2020 to 2050

Growth of rail transport and pathway to net zero emissions

Pandrol response through integral development approach

Growth of rail transport and pathway to net zero emissions

Pandrol response through integral development approach

Growth of rail transport and pathway to net zero emissions

Pandrol response through integral development approach

Pandrol Other alternatives in PU

Conclusions

<?>

Conclusions

P

An adequate track design needs to face many complex challenges: constructability, N&V performance, stray currents control, track quality, maintenance and sustainability

Pandrol as full integrated track systems supplier has the capability to offer comprehensive solutions to help the right track design:

Correct track resilience for vibration mitigation, reduced maintenance and extended lifetime

Climate Change challenge demands CO₂ neutrality

The Environmental Product Declaration (EPD) gives railway networks an objective and 3rd party audited evaluation for assessing their track components from a Green Procurement approach

Pandrol Recycled Rubber solutions combine technical performance and sustainability, with lower CO₂ values than alternative materials for similar railway applications

Thank you

ernesto.sanvicente@pandrol.com

Partners in excellence